
ML4SE Project

Group A

Ben Tran

Rohit Narayanan

Kendall Hester

Elaina Wittmer

Code Sources

Python

- 50 random functions from CodeSearchNet

Java

- The Pitaya repository
- Utility library

Python - Executability

Given the Python function below, what is the expected output value (after execution) given
<list_of_values>: <Method> Provide no additional explanation, just give me the result. If imports are
missing, just import the modules and execute the function with the given values (if any)

Overall successful - ~76%
methods correctly reasoned

Mainly on functions that
contain concise & clear
documentation with relatively
short implementation

Python - Executability (cont.)
Most interesting case is chatGPT
evaluating a logic expression in a
string as a return value

But usual failure cases are
misinterpreting the execution,
like adding an extra ‘-’ in the
result, unable to do calculation,
gave a generalized answer, etc.

Python - Executability (cont.)

ChatGPT sometimes even
assumed the function is not
executable, even if it is possible

- A hint of heavy reliance on
function documentation

And sometimes it parses the
value incorrectly, and assume an
error will occur

- Can be attributed to human
error in prompt formatting

Java - Executability

Prompt: “Given the Java function below, what is the expected output value (after execution) given <list_of_values>:
<Method>”

Overall successful - ~64%
methods correctly reasoned

Mainly on functions
manipulating simple primitive
types such as booleans and
strings or functions that include
very descriptive subroutine
calls (i.e. URLs).

Java - Executability (cont.)
ChatGPT failed completely
when attempting to reason
about any functions with
bitwise operations
(LittleEndian).

It also struggled with functions
from the Dates class (some
errors attributed to
representing inputs with a
non-native interface).

Python - Unit Testing
“Generate a unit test for the following Python code and provide only the
code, no other text: <method>”

88% tests compiled and executed
successfully while only ~61% of those
tests passed.

Pain points: Trying to make it create test
functions with only one assert statement.
The need to provide further context of the
functionality of the code to better generate
test cases (this tweak resulted in 100%
tests compiling and 72% of tests passing).

Java - Unit Testing

Overall successful - ~70%
tests compiled and
executed successfully

Pain points: Distinguishing
between Junit versions and
handling exceptions

“For the following repo: https://github.com/kocakosm/pitaya
Using JUnit 4, create a test class and generate a unit test for the
following java code: <method>”

Junit 5

Junit 4

Python - Semantic Equivalency

Consider the following method: <method> Can you generate a different Python method that produces the
same output as this one if both are given the same input? Provide no extra explanation.

Overall successful - ~72% generated methods match result from
original using the same static input

When running the generated methods on Task 2’s test cases, it
drops to ~66% methods passing the test cases

Python - Semantic Equivalency (cont.)

ChatGPT can be seen relying on the
documentation for generating an alternate
version of the function

Original ChatGPT ver.

Python - Semantic Equivalency (cont.)

Failures can be seen where ChatGPT
can omit ‘_’ at beginning of some
functions’ signature

ChatGPT sometimes attempt
generalized non-builtin imports
(Pandas) to more common builtins
import (datetime)

- Fails to support the existing input

Constants used tend to not be
preserved in the alternate version

Java - Semantic Equivalency

“For the following repo: https://github.com/kocakosm/pitaya
Consider the following method: <method> Can you generate a different
Java method that produces the same output as this one? Assume both
are given the same input.”

● 49/50 methods produced – additional 50th generated using new prompt
New prompt included “efficiency does not matter”

● 41/50 methods produced were able to compile
● 36/41 compilable methods were successful

→ Overall 72% success rate

Unsuccessful compilable methods failed due to lack of
understanding about object capabilities and exceptions handling

Java - Semantic Equivalency

ChatGPT Version

Original

Java - Semantic Equivalency

“For the following repo: https://github.com/kocakosm/pitaya
Consider the following method: <method> Can you generate a different
Java method that produces the same output as this one? Assume both
are given the same input.”

This implementation is simpler because it doesn't catch the
`MalformedURLException` thrown by the `URL` constructor and wrap it in
an `IllegalArgumentException`. Instead, it simply declares that it may
throw the exception, and allows the caller to handle it if necessary.
The behavior is the same as the original implementation if the caller
doesn't handle the exception .

Python - Data/Control Flow

Overall successful

 ~56% control flow (14/25)

- Good at identifying non-relevant
or redundant control flow

- Can sometimes follow relevant
flow change, but can still fail

~40% data flow (10/25)

- Harder for ChatGPT to follow

Python - Data/Control Flow (cont.)

CF change on recursion is less
susceptible to failure than DF

Doing computation remains a weakness

Java - Data/Control Flow
CF: 17 out of 25 functions (68%) are
able to be reasoned

● Sometimes ChatGPT ignores the
control flow change or evaluates it
incorrectly

Java - Data/Control Flow

DF: 16 out of 25 functions (64%) are able
to be reasoned

● Sometimes ChatGPT will focus on a
function it never had before.

Python - Bug Prediction/Localization

“Given the following testcase: <Test Case Code> Is the following
Python code buggy or correct? <Mutated Code>”

ChatGPT Reports
Bug

ChatGPT Reports
Correct

Survived 9 (7.2%) 4 (3.2%)

Killed 82 (65.6%) 30 (24.0%)

66

ChatGPT agreed with unit
test output 68.8% of the
time

Python - Bug Prediction/Localization

“Given the following testcase: <Test Case Code> Is the following
Python code buggy or correct? <Mutated Code>”

66

ChatGPT agreed with unit
test output 68.8% of the
time

Original

Python - Bug Prediction/Localization

“Given the following testcase: <Test Case Code> Is the following
Python code buggy or correct? <Mutated Code>”

66

ChatGPT agreed with unit
test output 68.8% of the
time

Modified

Python - Bug Prediction/Localization

“Given the following testcase: <Test Case Code> Is the following
Python code buggy or correct? <Mutated Code>”

66

ChatGPT agreed with unit test output
68.8% of the time

In this case, ChatGPT is able to find
what is causing the bug, provide
reasoning, and even explain what fix
will solve it, which in this case is
correct.

The following Python code is buggy.

The problematic statement is `int(2.0 // round(number /
2.0))`. The `//` operator performs integer division, so `2.0
// round(number / 2.0)` will always be either 2.0 or 0.0.

To fix the bug, we should use the `*` operator instead of the
`//` operator: `int(2.0 * round(number / 2.0))`. This will
correctly compute the rounded value.

Python - Bug Prediction/Localization

“The following Python code is buggy. Can you spot the statements
involved in the bug?”

66

ChatGPT Correctly
Located Bug

ChatGPT Did Not
Find (Correct) Bug

Survived 9 (7.2%) 4 (3.2%)

Killed 102 (81.6%) ↑ 10 (8.0%) ↓

ChatGPT agreed with unit
test output 84.8% of of the
time – Much higher than
prediction

In general, ChatGPT was
able to pinpoint errors and
even provide solutions that
match the original (word for
word, sometimes) much
effectively for Python.

Python - Bug Prediction/Localization

“The following Python code is buggy. Can you spot the statements
involved in the bug?”

66

There were times where
the code modification will
pass through the compiler,
and ChatGPT will state
there is not bug. However,
it will be able to determine
for a number of cases like
this if there’s missing
implementation.

There is no bug in the code. However, the
function is not doing anything and always
returns `None`. The `pass` statement is a
placeholder statement in Python that does
nothing. It is often used as a placeholder
when writing code that will be filled in
later.

Java - Bug Prediction/Localization

“Using the code and the unit test provided, can you determine
whether the following Java code is buggy or correct?”

ChatGPT Reports
Bug

ChatGPT Reports
Correct

Survived 6 (4.8%) 14 (11.2%)

Killed 66 (52.8%) 33 (26.4%)

66

ChatGPT agreed with unit
test output 64% of of the
time

Java - Bug Prediction/Localization

“Using the code and the unit test provided, can you determine
whether the following Java code is buggy or correct?”

66

ChatGPT agreed with unit
test output 64% of of the
time

Surprising Finding:
ChatGPT recognized when
code had been removed

Original

Java - Bug Prediction/Localization

“Using the code and the unit test provided, can you determine
whether the following Java code is buggy or correct?”

66

ChatGPT agreed with unit
test output 64% of of the
time

Surprising Finding:
ChatGPT recognized when
code had been removed

Modified

Java - Bug Prediction/Localization

“Using the code and the unit test provided, can you determine
whether the following Java code is buggy or correct?”

66

ChatGPT agreed with unit
test output 64% of of the
time

Surprising Finding:
ChatGPT recognized when
code had been removed

The `Parameters.checkCondition(bools.length
> 0);` statement in the original code was
meant to handle this case, but it was
removed in the modified code. Therefore, the
modified code is buggy. To make it correct,
we can add back the check for the empty
input array.

Java - Bug Prediction/Localization

“The following Java code is buggy. Can you spot the statements
involved in the bug?”

66

ChatGPT Correctly
Located Bug

ChatGPT Did Not
Find (Correct) Bug

Survived 11 (8.8%) ↑ 9 (7.2%) ↓

Killed 72 (57.6%) ↑ 27 (21.6%) ↓

ChatGPT agreed with unit
test output 64.8% of of the
time – Slightly higher than
prediction

In general, ChatGPT
reported fewer correct bugs
than in the prediction stage

Java - Bug Prediction/Localization

“The following Java code is buggy. Can you spot the statements
involved in the bug?”

66

ChatGPT sometimes
reported that the bug was
in the documentation or in
the unit tests, rather than
the code

conditional boundary change

Java - Bug Prediction/Localization

“The following Java code is buggy. Can you spot the statements
involved in the bug?”

66

There is a minor bug in the method's
Javadoc. Specifically, the description for
the `formats` parameter incorrectly
indicates that the length of the array must
be greater than zero. It should instead
indicate that the length must be greater
than or equal to zero, which matches the
condition checked by the
`Parameters.checkCondition` method.

ChatGPT sometimes
reported that the bug was
in the documentation or in
the unit tests

Thank You

