
Final Report

Database Functionality Changes
Please list out changes in directions of your project if the final project is different from
your original proposal (based on your stage 1 proposal submission).

For our project we ended up not developing a feature that would allow the user to
“favorite” and save recipes. Instead, we created the functionality to automatically
tag older recipes with new allergen tags if a new allergen was entered into the
database. We also didn’t need to incorporate functionality to expand the recipe
tabs in a separate browser window, as during the search the recipe boxes are
already large enough to contain all the steps and ingredients necessary for the
recipe. We also ended up not including nutritional information in the recipes, only
ingredients, steps, user id, recipe id, cook time, and recipe name.

Discuss what you think your application achieved or failed to achieve regarding its
usefulness.

When we first constructed our design, we all agreed upon the fact that the
existing websites have too much useless information as well as commercial. We
decided while keeping the core functionalities like search or CRUD operations,
we want to keep everything else as simple as possible. We think in terms of
functionalities, our website could be very useful. All the core features are derived
from user stories like allergy filter, or tag filter. Besides, it could also improve over
time like the allergens pool will grow as users mark more ingredients as
allergens. What has failed to achieve, however, is the authentication part of the
design. Right now the project grants all the users permission to perform CRUD
action without permission, which is not realistic if we want to put it into a larger
scale. This could also be something that we can work on in the future to improve
its usefulness.

Discuss what functionalities you added or removed. Why?

We added the functionality to have people search by tags that were applied to
the recipes. This would allow for the user to find recipes where they might not
have a specific keyword in mind, but they would like to find quick, easy, etc
recipes. Another thing we added was the ability for people to add the allergy
ingredient to the recipe. This would then find every single recipe in the database
with that ingredient and then add it to the allergy table. This was the first step into



adding the allergy to the list which would then allow the user to select the
ingredient when doing their search.

Are there other things that changed comparing the final application with the original
proposal?

None that we can think of.

Database Design changes
Discuss if you changed the schema or source of the data for your application

Our original proposed data sources were either a .csv file containing 100
thousand recipes from Food.com or a JSON file containing 1 million recipes. As
the project was implemented in SQL, using the 100 thousand recipe data table
made most sense as we didn’t have to manipulate the structure of the original
data file. We ended up sticking with the Food.com data source through the end,
although we only ended up using a subset of the data due to time and budget
constraints (discussed further below in the Technical Difficulties section).

We did change the schema from our original design (discussed in the following
subsection), but we made very few changes to the data source’s schema. Any
changes made to the schema provided by the source pertained to i) breaking
down arrays to form one tuple for each array item or ii) removing information that
wasn’t required for our goals, like descriptions of the recipe.

Discuss what you changed to your ER diagram and/or your table implementations.
What are some differences between the original design and the final design? Why?
What do you think is a more suitable design?

We had to make many changes to the UML diagram and table structure between
stage two and the final demo. The UML diagrams themselves are provided in the
Additional Materials section. Changes consist of the following:

1. The Equipment table was dropped due to not having the necessary data
to fill this table.

2. The Saved and Users tables both were not implemented due to time
constraints, though this would still be an important piece to add to our
application moving forward.

3. We renamed the Comments table to Reviews to better reflect the content
of the table and the goals of the application.



4. The Ingredients table was changed to an attribute of Recipes rather than
an independent table to reduce the number of joins required to perform
simple searches.

5. We added three new tables: Tags, Allergens, and Nutrition that contain
additional data about the recipes since this is information we wanted to
include in our application. Allergen information was previously an attribute
of ingredients, but it was much simpler to keep it in a separate table and
only join with Recipes when the user requests to filter by allergy
information. Nutrition ended up not being used in the final implementation
of the project, though it could be introduced at a later date.

6. The Recipes table is the pillar of the application and has primarily
changed in terms of the attributes we’ve chosen to include. The attributes
were changed primarily because of i) data availability, ii) changes to the
application objective, and iii) table design changes.

In terms of which design is more suitable, the intentional design choices we
made pertain to the types of information that were best represented as attributes
rather than tuples in a separate table. Recipe information determined to be more
integral, such as the ingredients or recipe steps, was kept as recipe attributes to
reduce the number of joins required to perform the basic functions of the
application. Other information such as tags or allergy information, which are
optional search filters for the application, were separate tables that could be
joined to the Recipes table using the recipe id number as a primary key.

Advanced Database Programs

Explain how you think your advanced database programs complement your application.

It complements our application from two perspectives which are user experience
and project scalability. For our trigger, it allows the user to leave the number of
step fields blank while inputting recipes and it will automatically calculate the
value for them as they click create. This reduces the work that needs to be done
in users’ ends. For our stored procedure, it automatically marked all the allergen
information if a new recipe has an allergen that was never seen before (not in the
allergy table yet). This makes our project more scalable because we could not
have all allergens in the world at once when we set up our database. Having the
stored procedure that handles the unseen allergens helped us to improve our
database overtime.



Future Directions
Describe future work that you think, other than the interface, that the application can
improve on

Something that we can improve on for the application is adding more features
into the application. The biggest one would be for users to create accounts where
we could then store user information and other things such as favorite recipes or
even a tab that shows all their submitted recipes. Upon creation of an account it
would give the user a userID, and then we could remove it from the form and
users would not have to worry about filling out unnecessary forms.

Other features might include a more sophisticated way to match the allergen
input to allergen information. Currently, the database is updated by performing a
LIKE ‘%allergen%’ match on the ingredients list, which is not sophisticated
enough to capture the fact that a dairy allergy could encompass many things. We
could also add a section for nutrition to each recipe in order to give users a better
idea of how healthy a certain recipe is, or whether it contains high or low
amounts of any specific nutrients they need to keep track of.

Technical Challenges

Each team member should describe one technical challenge that the team encountered.
This should be sufficiently detailed such that another future team could use this as
helpful advice if they were to start a similar project or where to maintain your project.

Bhaven

Formatting the data in django was tough. We were able to do the query to get the results
back from the database but we were unable to use it in the way we wanted to. It would just
vomit all the data in one giant array which is not what we wanted and there was no way to
individually select which column of data we wanted. We had to read the django documentation
very carefully along with some stackoverflow posts to eventually get the data formatted
correctly. Then we were able to get each column individually and then create the boxes which
had all the relevant information for each individual recipe.

Daqian
Connecting from our project to GCP was quite challenging. We wanted to use Django at

first. However, the tutorials online on connecting from Django to GCP are outdated. We then
switched to Node.js because we went through the setups in one of our project workshops.
Meanwhile Bhaven introduced the mysql connector library in python, which eventually helped us
set up the connection from our project to the database in Django again.



Elaina
Uploading the data using GCP was a challenge. The examples from class used .sql files

while our data was stored in .csv files and the process to upload a .csv file to the mysql
database in GCP was surprisingly more complex than uploading .sql files seemed to be. The
GCP documentation regarding this issue was either outdated or simply not helpful – this was a
common occurrence when trying to figure out how to do things in GCP. Ultimately, it was much
easier to upload the data to the server using MySQL Workbench, as the interface made it easier
to figure out how to upload the tables and allowed us to define the schema and data types very
easily. Unfortunately, we had already spent quite a significant portion of our GCP budget with
the time spent struggling with figuring out how to use it. I liked using GCP so each member
could access the server remotely, but I would recommend using other tools like MySQL
Workbench to interact with the server!

Michael
It was challenging to figure out how to send a query from Django using python functions

and MySQL connector to the database. We also had to figure out how to pass the values we
sent into a function to the actual SQL query so that it could be inserted into the string the query
is stored as, and it took a while to figure out how to format the string so that this data would
actually be properly sent. Specifically, we had to decide whether we wanted to use f string,
str.format, and %. We ended up using %, and that came with its own challenges. We found that
using anything other than %s for a sql query wouldn’t work even if the value being entered into
the query was an integer, so it took a while to figure out which proper version of % we needed to
use.

Division of Labor
Describe the final division of labor and how well you managed teamwork.

Frontend Team
- Bhaven:

- Python script to generate allergy table
- UML first draft design
- Setting up Django Project
- Creating pages using html, css
- Setting up the forms and connecting the forms to the database
- Trigger
- Stored Procedure
- Data Formatting
- Formatting of recipes upon search

- Elaina:
- UML first draft design
- Setting up database in GCP



- Allocating GCP access to team members
- UML second & final draft design
- Connecting Django project to GCP through Django Models
- Setting up the forms and testing query interaction
- Stored Procedure first draft
- Connecting form input to database

Backend Team
- Daqian

- Python script to generate tags table
- UML first draft design
- Keyword Search Query
- Two Advanced Queries
- Trigger first draft
- Stored Procedure Debugging

- Michael
- UML first draft design
- Create, Read, Update, Delete queries
- CRUD debugging
- stored procedure debugging

The team met approximately once a week as a group for the first two or so months. After this
point, around the midterm demo, it made more sense for backend and frontend teams to break
off and work on their respective pieces. Following this, subsets of the team met as needed to
perform the tasks required for the final demo, video, and report.



Additional Materials

A: The original UML diagram provided in Stage 2



B: Final UML Diagram


